248 research outputs found

    Characterizing genetic diversity and creating novel gene pools in rice for trait dissection and gene function discovery

    Get PDF
    Rice diversity is the foundation for rice improvement programs. At IRRI, over 100,000 rice accessions are deposited, and intelligent use of this diversity can not only help solve current production problems but also create future production opportunities and tackle climate change challenges. To fully explore and utilize rice diversity, two ingredients are needed: 1 - the genetic blueprints of diverse rice accessions in use, 2 - plant populations with recombined genotypes allowing expression of phenotypic variation and discovery of new genes/QTLs for use in breeding programs. Sequencing of the genomes & obtaining SNP genotypes of many rice accessions is feasible due to decreasing cost of advanced DNA sequencing technologies. Coupled with the creation of populations suitable for trait dissection / phenotyping, discovery of gene functions and allelic variations causal to important agronomic traits becomes possible. This in turn will provide rich biological evidences to the rice/cereal crop genome annotation community

    Using GIS for Selecting Trees for Thinning

    Get PDF
    Thinning removes trees within a stand to regulate the level of site occupancy and subsequent stand development. Before thinning is applied, foresters determine the amount of residual growing stock, the spatial distribution of the residual trees, and the criteria used to select trees to cut. In this study, a portion of a loblolly pine (Pinus taeda) plantation was surveyed through a complete tree tally with the coordinates of each individual tree recorded. The dataset was then processed in a GIS program composed in Arc Marco Language (AML) applying a moving circular quadrat system superimposed over the study area. In each quadrant, tree attributes including DBH (nearest 0.1 inch), basal area (sq ft per ac), and density (trees per unit area) were utilized as determining factors for tree selection. A 3D visualization before and after thinning was created with a goal of equal distribution of trees across the stand

    Assessing the genetic diversity of rice originating from Bangladesh, Assam and West Bengal

    Get PDF
    Acknowledgements This work was funded by BBSRC research project BB/J00336/1. FS and a part of the proportion of the cost of the Illumina genotyping was funded by a Beachell-Borlag International Fellowship. The authors would like to acknowledge the help of Dr MK Sarmah in collecting seed samples of the landraces and improved cultivars from Assam used in this study and Dr. Ma. Elizabeth B. Naredo and Ms. Sheila Mae Q. Mercado for handling of IRGC accessions and preparation of DNAs for genotyping. All rice seeds used here were obtained with MTA agreements and seed and dry leaves imported into the UK under import licence IMP⁄SOIL⁄18⁄2009 issued by Science and Advice for Scottish Agriculture.Peer reviewedPublisher PD

    Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    Get PDF
    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs
    corecore